

E-mail:sales@sunlongbiotech.com

www.sunlongbiotech.com

Fructose 1,6-Bisphosphatase (FBP) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Cat No: AK0276

Size:50T/48S

Components:

Extract solution: Liquid 60 mL×1. Store at 4°C.

Reagent I: Powder \times 1. Store at -20°C . Dissolve with 45 mL of Reagent IV before use. Unused reagent store at 4°C .

Reagent II: Liquid 18 μ L×1. Store at -20°C . Dissolve with 2.5 mL of distilled water before use. Unused reagent can separate into small tubules and storage at -20°C, avoid repeated freezing and thawing.

Reagent III: Liquid 245 μ L×1. Store at -20°C . Dissolve with 2.5 mL of distilled water before use. Unused reagent can separate into small tubules and storage at -20°C, avoid repeated freezing and thawing.

Reagent IV: Liquid 50 mL×1. Store at 4°C.

Product Description:

Fructose 1,6-bisphosphatase(FBP) also known as fructose- 1,6-diphosphatase, which plays a key role in the gluconeogenesis and the synthesis of photosynthetic assimilate sucrose.

FBP catalyzes fructose 1,6-diphosphate and water to produce 6-phosphate fructose and inorganic phosphorus. Glucose-phosphate isomerase and 6-glucose-phosphate dehydrogenase added to the reaction system that catalyze the formation of 6-glucose-phosphate gluconic acid and NADPH in turn. In this kit, the activity of FBP is determined by the increase rate of NADPH at 340 nm.

Reagents and Equipment Required but Not Provided:

Ultraviolet spectrophotometer, desk centrifuge, adjustable pipette, water bath, 1 mL quartz cuvette, mortar/homogenizes, ice and distilled water.

Procedure:

I. Sample preparation:

1) Tissue

According to the tissue weight (g): the volume of the Extract solution (mL) is $1:5 \sim 10$. Suggest add 1 mL of Extract solution to 0.1 g of tissue, fully homogenized on ice bath. Centrifuge at $8000 \times g$ for 10minutes at 4° C to remove insoluble materials, take the supernatant on ice before testing.

2) Bacteria or cells

According to the Bacteria or cells (10⁴): the volume of the Extract solution (mL) is 500~1000:1. Suggest add 1mL of Extract solution to 5 million of bacteria or cells. Use ultrasonic to splitting bacteria and cells (placed on ice, ultrasonic power 300W, working time 3 seconds, interval 7 seconds, total time for 3 min).

ei: 0086-57 1-56623320 Fax:0086-57 1-56623318

www.sunlongbiotech.com

E-mail:sales@sunlongbiotech.com

Centrifuge at 8000 ×g for 10 minutes at 4°C to remove insoluble materials and take the supernatant on ice before testing.

II. Determination procedure:

- 1. Preheat spectrophotometer for 30 minutes, adjust the wavelength to 340 nm, set zero with distilled water.
- 2. Preheat Reagent I at 37°C(mammal) or 25°C(other species) for 10 minutes
- 3. Add the following reagents in 1 mL quartz cuvette:

Reagent (µL)	Test tube(T)	Blank tube(B)
Sample	100	-
Extract solution	-	100
Reagent II	50	50
Reagent III	50	50
Reagent I	800	800

Add the above reagents to the 1 mL quartz cuvette in order, timing after add working solution, mix thoroughly. Detect the absorbance at 340 nm at the time of 10 seconds record as A_{T1} or A_{B1} . Then place dishes with the reaction solution in a 30°C water bath for 5 minutes. Take it out and wipe it clean, immediately measure the absorbance at the time of 310 seconds which record as A_{T2} or A_{B2} . $\Delta A_{T} = A_{T1} - A_{T2}$, $\Delta A_{B} = A_{B1} - A_{B2}$, $\Delta A = \Delta A_{T} - \Delta A_{B}$. The blank tube only need to be tested one or two times.

III. Calculation:

1. Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the produce of 1 nmol of NADPH per minute every milligram of protein.

FBP(U/mg prot)= $[\Delta A \div (\epsilon \times d) \times 10^9 \times Vrv] \div (Vs \times Cpr) \div T = 321.5 \times \Delta A \div Cpr$

2. Sample weight:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the produce of 1 nmol of NADPH per minute every gram of tissue.

FBP(U/g weight)= $[\Delta A \div (\varepsilon \times d) \times 10^9 \times Vrv] \div (W \div Ve \times Vs) \div T = 321.5 \times \Delta A \div W$

3. Bacteria or cultured cells

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the produce of 1 nmol of NADPH per minute every 1 0000 cells or bacteria.

$$FBP(U/10^{4} cell) = [\Delta A \div (\epsilon \times d) \times 10^{9} \times Vrv] \div (Vs \div Ve \times N) \div T = 321.5 \times \Delta A \div N$$

ε: NADPH molar extinction coefficient, 6.22×10³ L/mol/cm;

d: Light path of cuvette, 1 cm;

Vrv: Total reaction volume, 1×10^{-3} L;

Vs: Sample volume, 0.1 mL;

Ve: Extract volume, 1 mL;

Cpr: Sample protein concentration (mg/mL);

E-mail:sales@sunlongbiotech.com

www.sunlongbiotech.com

T: Reaction time, 5 minutes;

W: Sample weight(g);

N: Numbers of cells or bacteria (unit: 10⁴);

 10^9 : 1 mol = 10^9 nmol.

Note:

- 1. If $\Delta A > 0.6$, please dilute the sample to appropriate concentration, multiply dilute times in the formula.
- 2. The blank tube is a detection hole for detecting the quality of each reagent component, and normally that the change of ΔA_B does not exceed 0.02.

Experimental example:

1. 1 mL of Extract solution is added to 0.1 g of liver for homogenization. After the supernatant is taken out, the operation is performed according to the determination steps. measure using a micro quartz colorimetric plate, the $\Delta A_T = A2_T - A1_T = 0.756 - 0.647 = 0.109$, $\Delta A_B = A2_B - A1_B = 0.074 - 0.062 = 0.012$, $\Delta A = \Delta A_T - \Delta A_B = 0.109 - 0.012 = 0.097$.

FBP (U/g mass) = $321.5 \times \Delta A \div W = 321.5 \times 0.097 \div 0.1 = 311.855 U/g mass.$

2. 1 mL of Extract solution is added to 0.1 g of Ryegrass for homogenization. After the supernatant is taken out, the operation is performed according to the determination steps. measure using a micro quartz colorimetric plate, the $\Delta A_T = A2_T - A1_T = 0.785 - 0.609 = 0.176$, $\Delta A_B = A2_B - A1_B = 0.074 - 0.062 = 0.012$, $\Delta A = \Delta A_T - \Delta A_B = 0.176 - 0.012 = 0.164$.

FBP (U/g mass) =321.5× Δ A÷W=321.5×0. 164÷0. 1=527.26 U/g mass

Related Products:

AK0317/AK0316 Pyruvate Carboxylase(PC) Activity Assay Kit

AK0143/AK0142 Phosphoenolpyruvate Carboxykinase(PEPCK) Activity Assay Kit

AK0141/AK0140 Glucose-6-phosphatase Activity Assay Kit